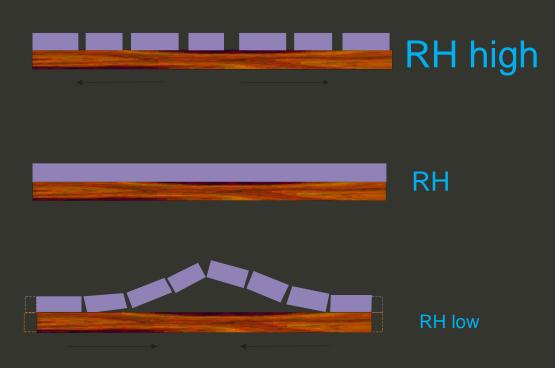
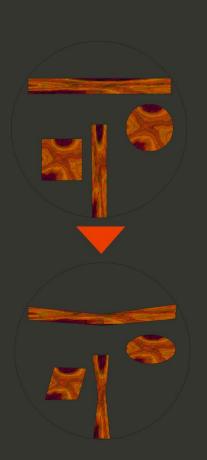


Temperature and Relative Humidity agents of deterioration

22 September 2015
Mikkel Scharff
Sarah Staniforth


Relative humidity and water in materials


Damage caused by the wrong temperature and relative humidity

Dimensional changes Wood and drying / low RH

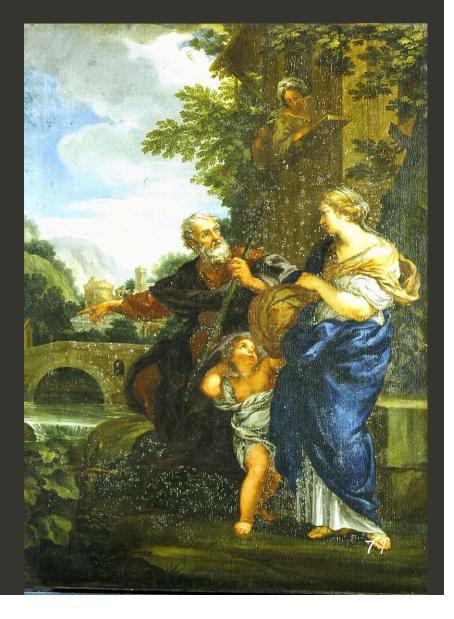
In wood: shrinkage, cracks
Other layers: disruption, flaking

Water or humidity

Biological effects of high RH: Mould and fungi

Damage caused by incorrect RH

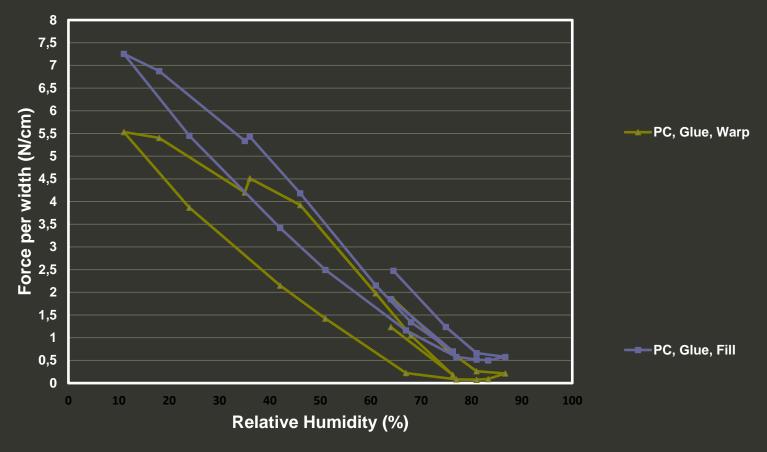
- Damp (over 65%)
 - Causes mould growth (which stains and weakens organic and inorganic materials)
 - Corrosion (of metals)
 - Shrinkage (of tightly woven textiles)


Damage, incorrect RH: damp

Damage, incorrect RH: damp

Photographs courtesy National Trust, UK

Damage caused by incorrect RH


- Dry (under 50%)
 - Causes shrinkage of moisture-containing materials resulting in cracking and breakage (eg, of wood)
 - Desiccation (eg of glues) ***
 - Veneers detach

RH dry: Shrinkage restrained painted canvas ("tenting")

Frederik Theodor Kloss, 1889, Glue-paste lined on stretcher, Photograph M.Scharff

RH dry: Restrained glue-paste lining on primed canvas

Response of glue-paste lining materials to changes in RH between low and high RH

10 /

Damage, incorrect RH: dry

Damage, incorrect RH: dry

Photograph courtesy National Trust, UK

Damage caused by incorrect RH

Fluctuations

- Shrink and swell unconstrained organic materials
- Crush or fracture constrained organic materials
- Cause layered organic materials, which expand and contract with changing RH, to delaminate, tent*** or flake
- Loosen joints (in furniture)

Damage, incorrect RH fluctuations

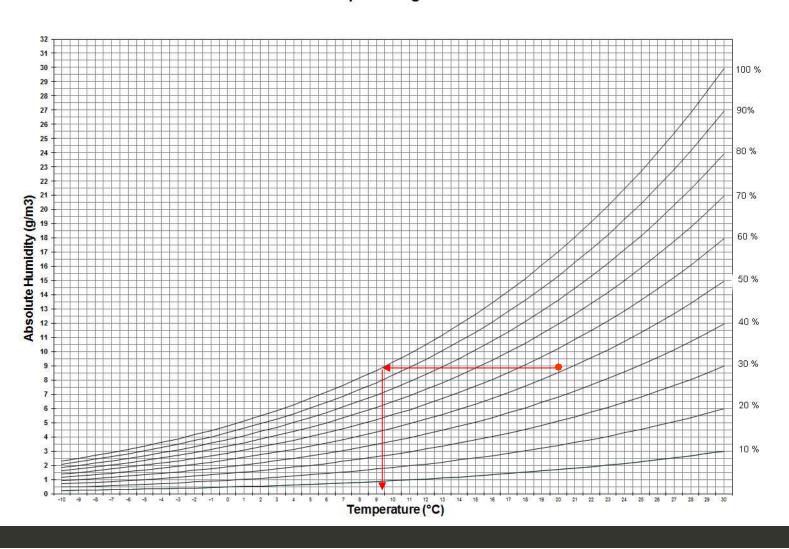
Damage, incorrect RH fluctuations

Fluctuations NaCl around 76% RH

RH > 76%

RH < 76%

Definition of RH and AH


- Relative humidity
 - The amount of water vapour that air holds at any given temperature compared with it's maximum water content
- Absolute humidity
 - The amount of water contained in materials

50% RH

- 1 m³ of air holds about 18.0 g of water
 vapour at 20°C when it holds its maximum
 = 100% RH
- 1 m³ of air holds 9.0 g of water vapour at 20°C when it holds 50% of it's maximum = 50% RH
- Organic materials contain water in equilibrium with the relative humidity in surrounding air

Psychrometric chart

Water vapour diagram

Relative humidity (RH), absolute humidity (AH)

- Typically, cellulosic materials contain about 8-10%* by weight of water (EMC, Equilibrium Moisture Content) when in equilibrium with RH 50% at 20°C
- Thus, a wood panel of 1 kg will contain about 100 g of water at 50% RH

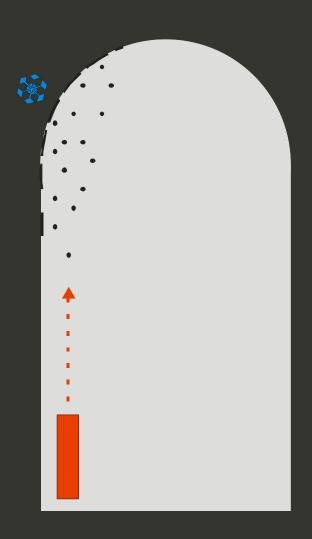
* Michalski, CCI web 2013, suggests 8%

Relative humidity (RH), absolute humidity (AH)

- Large changes in relative humidity cause organic materials like wood to absorb or release water
- Large amounts of water being absorbed or released may cause dimensional changes
- Small exchanges of water between wood and the surrounding air does not cause dimensional changes
- Duration of change

Relative humidity – damage caused by incorrect RH

- Relative Humidity (RH) in the sorrounding air determine the water content of many materials
- Thus, incorrect Relative Humidity (RH) may cause various kinds of damage


RH levels

- Recommended levels of RH are influenced by local climate and the type of objects in the collection
- Aim is to keep moisture content of objects as constant as possible to prevent dimensional change by avoiding RH fluctuations.
- If RH fluctuations are accepted: slow seasonal

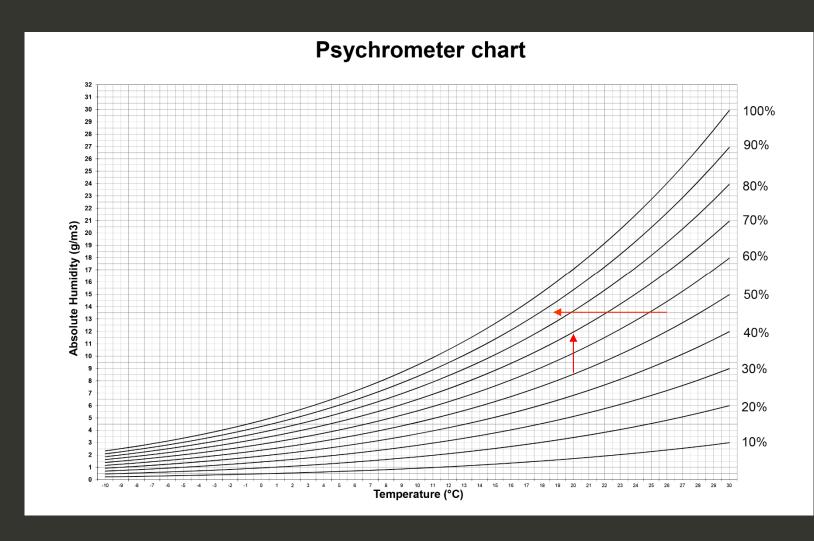
Temperature

- Speed of chemical reactions depends on T°
- Speed of diffusion
- Thermal expansion / contraction, e.g. frost
- Microbiological activity
- Movement of air
- Glass transition temperature, polymers (Tg)
- \$\$\$ Cost of regulating temperature

Temperature, movement of air

Temperature

- People very conscious of temperature.
- Comfort heating (or cooling)18-25 °C
- - \$
- When people comfort does not need to be considered (ie NT houses in winter and storage facilities), heat to give required RH (conservation heating) - (more Thursday)
- - \$


Historic houses and conservation heating

Temperature

- Relationship between Relative Humidity and temperature:
- RH increases as T° decreases.
- RH decreases as T° increases.

Temperature and Relative Humidity (RH)

"What if?"

Temperature, recommendations

- Avoid direct heating (over mantels, above radiators) since it can cause local drying
- Avoid sunlight, powerful spotlights and lights in confined spaces
- Avoid condensation by keeping objects above dew point temperature of air

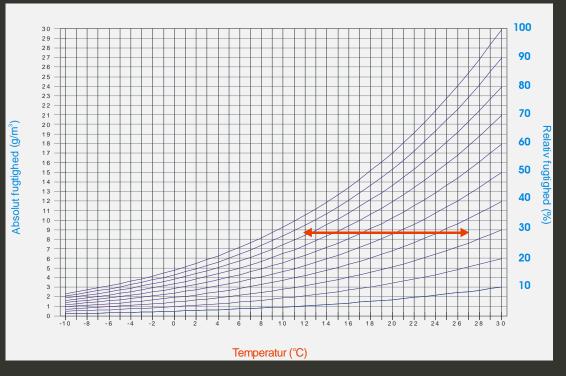
Measurement, T and RH

- Hygrometers measure RH.
- Five types of interest to museums.
- Psychrometers (T°-difference between wet&dry T°)
- Hair (or paper) hygrometers (organic reactions)
- Electronic hygrometers (change of electrical property with RH)
- Data loggers (cabled data transfer, radio, WiFi)
- Dewpoint meter (cooling, condensation, dew point)

Sling psycrometer, Thermohygrograph ("data logger")

Measuring and collecting data, documentation, dissemination, research

Electronic RH measurement instruments, dataloggers



Dewpoint meter

Laboratory reference instrument for calibration

Photograph courtesy National Trust, UK

RH norms: Garry Thomson The Museum Environment, 1978 &1986

Class 1

emperature: Winter 19 +/- 1°C

Summer 24 +/- 1°C

Relative humidity (RH) Day and night, all year 50 or 55 +/- 5%

To be kept with the range 45 - 60% for mixed collections,

Class 2

Temperature: As constant as possible to stabilize RH

Relative Humidity: To be kept within the interval 40 - 70% RH

RH norms: ASHRAE 1999, 2004, 2007

Normal/ Yearly average	Control, class	short time fluctuations/gradient	Sesonal ajustments	
	AA	+/- 5% +/- 2°C	None +5°C -5°C	
	A	+/- 5% +/- 2°C	+10% / -10% +5°C / -10°C	
50% RH 15 - 25°C		+/- 10% +/- 2°C	None +5°C / -10°C	
	В	+/- 10% +/- 5°C	+10% / -10% +10°C (< 30°C)	
	С	25 − 75% < <mark>30 (25)°C</mark>		
	D	< 75%		
40% RH - 20°C 30-50% RH 10°C 0-30% RH	Cold store Cool store Dry room	e No dar	+/- 10% +/- 2°C No damp < 30%	

Recommended RH levels

- 65%: Mixed collection in humid tropics. (Air circulation is important to discourage mould growth.) Too high for metals.
- 55%: Mixed collections in Europe and North America.
 (May cause frosting and condensation problems in museums where winter temperatures are low.)
- 45-50%: Compromise for mixed collections in museums where winter temperature are low. Best for paper and textile collections.
- 40-45%: Metal-only collections. Local material exhibited in museums in arid regions.

Stringent recommendations

- RH specifications have become very stringent
- 20 °C / 50% RH is typical
- Based on performance of control equipment rather than object need
- \$\$\$ Expensive to achieve, capital and running costs, not sustainable
- IIC + ICOM-CC Guidelines

Bizot group

International Bizot group specification for international loans:

- 40-60% RH
- 16-25 °C

 How tight specifications are actually necessary? [to be discussed ...]

End

• **Acknowledgements**: thanks to Bent Eshøj (KADK) for inspiration, use of text examples and illustrations (non-credited illustrations by B.Eshøj)